## COMPUTATION OF ORBIT OF THE COMES OF SIRIUS.

By A. W. Roberts.<br>[REad 25Th November, 1891.]

## I.-Introductory.

${ }^{3}$ The orbit of any body moving in a curvilinear orbit can be determined either by a graphical or by an analytical method.

In a case of a body whose co-ordinates, either with reference to the earth, or the superior body round which it revolves, can be determined with very great precision, there can be no hesitation as to the method of procedure.

And yet even as an important auxiliary to the rapid determination of the orbit of a comet from early observations the graphical method merits our favour. When later positions are obtained these approximate positions can be corrected by the "variation of curtate distances."

With regard to binary stars the graphical method, for many reasons, is to be preferred.

The latitude of error precludes the more exact refinements of analytical research. We are therefore compelled to accept what seems the most probable orbit, and the computer strives to obtain an orbit that shall best agree with the observed measurements.

The following is an attempt to construct an orbit for Sirius that will not depart much from the observed path. The measures used are those collated by Mr. Gore, and publisned, along with an orbit, in the June number of the Monthly Notices of the Astronomical Society, 1889.

The orbit computed in this paper differs in one or two particulars from the one given by Mr. Gore. In both orbits the periodic time is about fifty-eight years. The Comes of Sirius according to this paper is at its minimum distance, two seconds, in 1892 ; according to Mr. Gore's orbit in 1892, the two stars are three and a half seconds apart, the peri-astron date being 1896.

The difference is mainly owing to the much greater eccentricity obtained in tbis paper.
. It would be presumptuous to offer an opinion as to the merits of
either orbit. When the pair opens out in 1896 an orbit will be obtained that will be worthy of more reliance than any yet computed.

In this paper most of the detailed working is left out, and only the more important steps given.

## II.-Construction of Apparent Ellipse.

After all markedly erroneous measures have been set aside the observations of each year are combined. In the case of Sirius the following mean places were thus obtained :

|  | Position Angle. | Distance. |
| :---: | :---: | :---: |
|  | 0 |  |
|  | $84 \cdot 72$ | $10 \cdot 25$ |
| $1862 \cdot 22$ | $80 \cdot 95$ | $10 \cdot 42$ |
| $1863 \cdot 18$ | $79 \cdot 60$ | $10 \cdot 92$ |
| $1864 \cdot 22$ | $77 \cdot 06$ | $10 \cdot 73$ |
| $1865 \cdot 23$ | $74 \cdot 68$ | $10 \cdot 60$ |
| $1866 \cdot 23$ | $72 \cdot 27$ | 1098 |
| $1867 \cdot 23$ | $70 \cdot 63$ | $11 \cdot 15$ |
| $1868 \cdot 25$ | $68 \cdot 76$ | $11 \cdot 17$ |
| $1869 \cdot 20$ | $64 \cdot 15$ | $10 \cdot 92$ |
| $1871 \cdot 22$ | $61 \cdot 29$ | $11 \cdot 28$ |
| $1872 \cdot 21$ | $60 \cdot 84$ | $10 \cdot 57$ |
| $1873 \cdot 22$ | $58 \cdot 03$ | $11 \cdot 39$ |
| $1874 \cdot 14$ | $56 \cdot 68$ | $11 \cdot 10$ |
| $1875 \cdot 21$ | $53 \cdot 11$ | $11 \cdot 15$ |
| $1877 \cdot 21$ | $52 \cdot 24$ | $10 \cdot 77$ |
| $1877 \cdot 98$ | $48 \cdot 60$ | $10 \cdot 36$ |
| $1879 \cdot 40$ | $48 \cdot 95$ | $9 \cdot 99$ |
| $1880 \cdot 14$ | $45 \cdot 0.5$ | $10 \cdot 05$ |
| $1881 \cdot 18$ | $42 \cdot 85$ | $9 \cdot 58$ |
| $1882 \cdot 13$ | $39 \cdot 79$ | $9 \cdot 36$ |
| $1883 \cdot 15$ | $36 \cdot 59$ | $8 \cdot 82$ |
| $1884 \cdot 18$ | $33 \cdot 87$ | $8 \cdot 02$ |
| $1885 \cdot 20$ | $29 \cdot 41$ | $7 \cdot 35$ |
| $1886 \cdot 14$ | $24 \cdot 39$ | $6 \cdot 79$ |
| $1887 \cdot 14$ | $13 \cdot 85$ | $5 \cdot 27$ |
| $1888 \cdot 97$ |  |  |
|  |  |  |

These measures are then plotted down, and the interpolating curve drawn with as much care as possible. This curve ought to be a :segment- of an ellipse.

The centre is found by the property of the ellipse that if tangents be drawn at the extremities of any chord the line passing through the
point of intersection of the tangents and the centre of the chord will also pass through the centre of the ellipse.

As all the lines will not pass through one point, the central point of all their intersections will probably be the centre.

The next step is to find the position of the Axis Major. In the case of Sirius, the form of the interpolating curve indicates that a portion of it lies on each side of this line. The line, therefore, from which opposite ordinates are equal, is the axis major.

The axis major being drawn, and the centre having alrealy been found, the focus can be determined either from the equation,

$$
y^{2}=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right)
$$

or by trial with a pair of compasses.

## III.-Transformation of Co-Ordinates.

The following measures are then carefully taken with a pair of compasses :
(1) Semi-axis major... ... ... ... 7." 45
(2) Semi-axis minor... ... ... ... 5." 27
(3) Co-ordinate of centre of apparent ellipse along
E. line ( $y$ ) ... ... ... $4{ }^{\prime \prime} 158$
(4) Co-ordinate along N. line ( $x$ ) ... ... $0 \cdot{ }^{\prime \prime} 571$
(5) Inclination of Axis Major to Declination Circle $41 \cdot 30$

Let the co-ordinates of the apparent ellipse be, referred to apparent centre, $x^{\prime}$ and $y^{\prime}$.

- Let the co-ordinates of the apparent ellipse, referred to Sirius, be $x$ and $y$.

Let co-ordinates (3) and (4) be ( $\alpha$ ) and ( $\beta$ ).
Let $\theta=$ inclination of axis major to E. and W. line; then

$$
\begin{aligned}
& x^{\prime}=\cos \theta(x-a)-\sin \theta(y-\beta) \\
& y^{\prime}=\sin \theta(x-a)+\cos \theta(y-\beta)
\end{aligned}
$$

But $x=\frac{b}{a} \sqrt{a^{2}-y^{2}}$ (remembering that $x$ is along N. axis), substituting and giving numerical values to the several constants we have : $(5 \cdot 27)^{2}-(\cdot 663 x-\cdot 749 y+2 \cdot 7358)^{2}=(\cdot 749 x-\cdot 663 y-3 \cdot 1844)^{2}\left(\frac{527}{745}\right)^{2}$

Simplifying this equation we have :
$-.08152 x+\cdot 40828 y-\cdot 04736 x^{2}+\cdot 03262 x y-\cdot 05133 y^{2}+1=0$
As a check upon these values we make $y=0$.

point of intersection of the tangents and the centre of the chord will also pass through the centre of the ellipse.

As all the lines will not pass through one point, the central point of all their intersections will probably be the centre.

The next step is to find the position of the Axis Major. In the case of Sirius, the form of the interpolating curve indicates that a portion of it lies on each side of this line. The line, therefore, from which opposite ordinates are equal, is the axis major.

The axis major being drawn, and the centre having alrealy been found, the focus can be determined either from the equation,

$$
y^{2}=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right)
$$

or by trial with a pair of compasses.

## III.-Transformation of Co-Ordinates.

The following measures are then carefully taken with a pair of compasses :
(1) Semi-axis major... ... ... ... 7•" 45
(2) Semi-axis minor... ... ... ... 5."27
(3) Co-ordinate of centre of apparent ellipse along E. line ( $y$ ) ... ... ... $4^{\prime \prime} 158$
(4) Co-ordinate along N. line $(x) \quad . . . \quad 0^{\prime \prime} 571$
(5) Inclination of Axis Major to Declination Circle 41.030

Let the co-ordinates of the apparent ellipse be, referred to apparent centre, $x^{\prime}$ and $y^{\prime}$.

Let the co-ordinates of the apparent ellipse, referred to Sirius, be $x$ and $y$.

Let co-ordinates (3) and (4) be ( $\alpha$ ) and ( $\beta$ ).
Let $\theta=$ inclination of axis major to E. and W. line ; then

$$
\begin{aligned}
& x^{\prime}=\cos \theta(x-a)-\sin \theta(y-\beta) \\
& y^{\prime}=\sin \theta(x-a)+\cos \theta(y-\beta)
\end{aligned}
$$

But $x=\frac{b}{a} \sqrt{a^{2}-y^{2}}$ (remembering that $x$ is along N. axis), substituting and giving numerical values to the several constants we have : $(5 \cdot 27)^{2}-(\cdot 663 x-\cdot 749 y+2 \cdot 7358)^{2}=(\cdot 749 x-663 y-3 \cdot 1844)^{2}\left(\frac{527}{745}\right)^{2}$

Simplifying this equation we have :
-.08152x+.40828y-.04736 $x^{2}+.03262 x y-\cdot 05133 y^{2}+1=0$.
As a check upon these values we make $y=0$.

## Apparent Orbit of Comes of Sirius

Elrments uf Apparent Ellipse
Sem Axys Major $\% 75$
Som Axis Munor $5 " 24$
Pisifiun Aagle of Centre $82^{*} 10$ DisZance of Centre fhom Sirvus \& $^{\circ} 20$ Kuchnokion of Axes Mayor $\quad 1 r^{\prime} 50$


Scale th Sceonds
Elpments of True Orbrit
Povodichitrte
Pera-Ashum Parisage Eccenhrocity Inclimation
Poszhon Aliyle of Nodes
Drslarace of Perr-Asiran frum Node
Scmi-Axis lfafor
Mean Ammaì Motwor


Then :

$$
-\cdot 08152 x-\cdot 04736 x^{2}+1=0
$$

And :

$$
x \quad 3.815 \text { and }-5.535
$$

Measurements by compass give,

$$
x=3.81 \text { and }-5.54
$$

Making $x=0$,
Then :

$$
+\cdot 40828 y-\cdot 05133 y^{2}+i \quad 0
$$

And :

$$
y=1 \cdot 916 \text { and }-9 \cdot 920
$$

Measurements by compass give,

$$
y=1.925 \text { and }-9.92 \mathrm{C}
$$

But the general equation to the ellipse is,

$$
\alpha x+\beta y+\gamma x^{2}+\delta x y+\varepsilon y^{2}+1=0
$$

Therefore, substituting :

$$
\begin{aligned}
& a=-\cdot 08152, \\
& \beta=+\cdot 40828, \\
& \gamma=-\cdot 04736, \\
& \delta=+\cdot 03262, \\
& \varepsilon=-\cdot 05133 .
\end{aligned}
$$

## IV.-Deternination of all the Elements except Periodic Time and Perl-astron Date.

As already determined :

$$
\begin{array}{ll}
a=-\cdot 08152 & {[8 \cdot 91127] n} \\
\beta=+\cdot 40828 & {[9 \cdot 61097]} \\
\gamma=-\cdot 04736 & {[8 \cdot 67542] n} \\
\varepsilon=-\cdot 05133 & {[8 \cdot 71038] n} \\
\delta=+\cdot 03262 & {[8.51356]}
\end{array}
$$

The following elegant formulae, given by Prof. Kowalsky, Kazan, determine the relations between these co-efficients and the elements of the true orbit :

$$
\begin{aligned}
& \frac{\tan ^{2} i}{q^{2}} \sin 2 \Omega=\delta-\frac{1}{2} \alpha \beta \\
& \frac{\tan ^{2} i}{q^{2}} \cos 2 \Omega=(\gamma-\varepsilon)-\frac{1}{4}\left(\alpha^{2}-\beta^{2}\right) \\
& \frac{2}{q^{2}}+\frac{\tan ^{2} i}{q^{2}}=-(\gamma+\varepsilon)+\frac{1}{4}\left(\alpha^{2}+\beta^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\varepsilon \sin \lambda=-\frac{q}{2}(\beta \cos \Omega-a \sin \Omega) \cos i \\
\varepsilon \cos \lambda=-\frac{q}{2}(\beta \sin \Omega+a \cos \Omega) \\
a=\frac{q}{1-\varepsilon^{2}}
\end{gathered}
$$

The most important elements, Periodic time and Peri-astron passage. have to be determined by another method.

From these formule we deduce the following :

$$
\begin{aligned}
\delta-\frac{1}{2} a \beta & = \\
(\gamma-\varepsilon)-\frac{1}{4}\left(a^{2}-\beta^{2}\right) & =\cdots+04926=[8 \cdot 69249] \\
-(\gamma-\varepsilon)+\frac{1}{4}\left(a^{2}+\beta^{2}\right) & =\ldots+\cdot 04398=[8.64325]
\end{aligned}
$$

Therefore :

$$
\begin{aligned}
& \tan 2 \Omega=\frac{.04926}{.04398} \quad \begin{array}{ll}
8 \cdot 69249 \\
8.64325 \\
0.04924
\end{array} \\
& 2_{\Omega}=48^{\circ}-14^{\prime} \quad \ldots \quad \ldots \quad \Omega=24^{\circ}-7^{\prime} \\
& \begin{array}{ll}
\tan ^{2} i \\
q^{2} & =\frac{\delta-\frac{1}{2} \alpha \beta}{\sin 2 \Omega}
\end{array} \quad \begin{array}{l}
8.69249 \\
9.87271 \\
8.81978
\end{array} \\
& =\cdot 06604 \\
& \frac{2}{q^{2}}+\frac{\tan ^{2} i}{q^{2}}=-(\gamma+\varepsilon)+\frac{1}{4}\left(a^{2}+\beta^{2}\right) \\
& \frac{2}{q^{2}}=\cdot 14203-\cdot 06604=\cdot 07599 \\
& q^{2}=\frac{2}{.07599} \quad \begin{array}{l}
0 \cdot 30103 \\
\hline 1 \cdot 48076
\end{array} \\
& \tan ^{2} i \quad 1 \cdot 42027 \\
& 8.81978 \\
& 0 \cdot 24005 \\
& \tan i=0 \cdot 12002 \quad . . \quad . . . \quad . . \quad . . . \quad i=52^{\circ}-49^{\prime} \\
& (\beta \cos \Omega-\alpha \sin \Omega) \cdot \cos i={ }^{2} 24536=[9 \cdot 38980] \\
& (\beta \sin \Omega+a \cos \Omega)=\cdot 09243=[8 \cdot 96581] \\
& \begin{aligned}
\tan \lambda & =\frac{(\beta \cos \Omega-\alpha \sin \Omega) \cos i}{\beta \sin \Omega+\dot{\alpha} \cos \Omega} \\
& =[9.35980]-[8.96581]=[0.42399]
\end{aligned}
\end{aligned}
$$

The negative value of $\sin \lambda$ shows us that $\lambda$ is
in the third quadrant $\quad . . \quad . . . \quad . . \quad \lambda=249^{\circ}-21^{\prime}$

$$
\begin{aligned}
\varepsilon & =\frac{-q(\beta \cos \Omega-\alpha \sin \Omega) \cos i}{} \\
& =\frac{0 \cdot 71014 n}{} \quad 2 \sin \lambda \\
& \frac{9 \cdot 38980}{0 \cdot 09994 n}
\end{aligned}
$$

$0 \cdot 27219 n$
$\overline{9 \cdot 82775} \quad . . \quad . . \quad . . \quad . . . \quad . . \quad \varepsilon=\cdot 6726$

V.-Determination of Peri-Astron Passage and Periodic Time.

The Peri-astron date and Periodic Time are computed from the following formulae :
(1) $\tan \psi=\cos i \tan (\theta+\lambda)$
(2) $\tan \frac{1}{2} u=\sqrt{\frac{1-\varepsilon}{1+\varepsilon}} \tan \frac{1}{2} \theta$
(3) $u-\varepsilon \sin u=n t$

The first formula gives the relation between the true orbit and its projection on the plane of the background of the heavens.

The second and third formulæ are the usual formulæ for elliptical motion in these expressions :
$\psi=$ Angular distance from node.
$i=$ Inclination of orbit.
$\theta=$ True anomaly.
$\lambda=$ Longitude, or distance, of the Peri-astron from node.
$u=$ Eccentric anomaly.
$\varepsilon=$ Eccentricity of orbit.
$n=$ Mean annual motion.
$t=$ Time from Peri-astron date.
By the aid of these formulæ the position angles given in Table I. are reduced to mean angular distances from Peri-astron.

It is not necessary to reduce all the positions. Two sets a sfar

